On Refraction T'ables.

By A. K. Mansfield, Comdofa, S. A.

(Read before the American Philosophical Society, January 5, 1877.)

The nperation of computing the difference between the true and the apparent zenith distances of stars, is usually performed by means of Bessel's refraction tables, which are calculated from his formula, namely :

$$
R=d \tan _{=}^{\zeta}(B T)^{A} \gamma^{i^{*}}
$$

This operation is usually logarithmic, and the refraction tables are therefore tables of logarithms. The computation may, however, be very much simplified, by the use of natural numbers in place of their logarithins, as will appear from the following :

In the above formula substitute R for atan n_{ξ}, and ρ for $(B T)^{A} \gamma_{\gamma}$. The formula then becomes

$$
\begin{equation*}
R=R_{1} \rho \tag{1}
\end{equation*}
$$

in which R_{1} may be called the mean refraction, and ρ is a factor depending almost entirely on the temperature and pressure of the atmospliere. For general purposes two tables may be made, one of mean refractions $\left(R_{1}\right)$, being the natural numbers corresponding to the table " d tan";" of Bessel. and the other of corrections to the mean refraction. Butsince these corrections would be sometimes additive and sometimes subtractive, the latter table would be reduced to a smaller compass, if each observatory or place where the tables are adopted were to adapt them to the true mean refraction of that place. This may be done as follows:

Let ρ_{0} be that value of ρ, which substituted in equation (1), would give true mean refraction for any particular place : and let R_{o} be that mean refraction. Then
R_{1} is given by its log. in Bessel's first table " log. d tan"," and a round value for $\log \rho_{0}$, near the above mentioned mean, may be chosen. From this formula a new table of mean refractions in natural numbers can easily be made.

Let r be the correction to be applied to this mean refraction. Then
from which the table of corrections may be calculated.

[^0]In making the table, comparatively few values need be computed, for, having these fow values, the others may be supplied by interpolation. The following is a small portion of a table of these corrections, in what appears to be its most convenient form. It was computed from Bessel's tables, as givell by Peter's.

$\log .1$	-0.01000	1100	1200	1300	1400	1500	\&c.
\%	Mean R.						
150	$15.12{ }_{106}$	0.03	0.07	0.10	0.14	0.17	
16	${ }^{16.18}{ }_{10 \%}$	0.04	0.08	0.11	0.15	0.19	
17	17.25 108	0.04	0.08	0.12	0.16	0.20	
18	18.33	0.04	0.09	0.13	0.17	0.21	
19	${ }_{111}^{19.43}{ }_{11}$	0.04	0.09	0.13	0.18	0.22	
20	20.54_{112}^{111}	0.05	0.10	0.14	0.19	0.24	
21	${ }_{21.66}{ }_{114}$	0.05	0.10	0.15	0.20	0.25	
220	22.80	0.05	0.11	0.16	0.21	0.26	
log. ρ	-0.01000	. 00900	0801	0702	0604	$0 \overline{0} 05$	Ee.

Apparent zenith distance is here used as argument at the side. It may be replaced, however, by the corresponding declination, or the circle reading. Lng. ρ is used as argument at the top, and -0.01000 is the assumed value of log. μ_{0}. When log. $\mu=\log . \rho_{0}$ the correction is zero, therefore we have written the table of mean refractions in that column, thus combining both tables in one. This may be done when the arguments at the side are not chosen so firr apart as to make the second differences of the mean refraction too great. In computing the tables from the alowe formula, the arithmetical complement of log. ρ must be used, when that log. as found from Bessel's tables, is negative. When log. p oceurs in the line at the top of the tahle, the correction is negative, when in the line at the bottom, it is positive. To find the values of log. p for the lower line, corresponding to those of the upper line, eall the natural number corresponding to any particular value in the upper line ρ_{1}, and its corresponding value for the lower line ρ_{2}. Then from formula (3), since r is minus in one case and plus in the other,

$$
\begin{array}{r}
-\rho_{1}+\rho_{0}=\rho_{2}-\rho_{0} \\
\text { or } \rho_{2}=2_{\rho_{0}}-\rho_{1} \ldots \ldots \ldots \ldots \ldots \ldots \tag{4}
\end{array}
$$

Before entering the tahle of corrections, loy. B, log. T, and log. γ are taken as usial from Bessel's tables, are then adderd, and their sum is the argument log. p, when the zenith distance is less than dio. When the zenith distance is 4.5 or more, n correction on account of the exponent h is to be ap-
plied to the log., and when ${ }^{77} 7^{\circ}$ or more, another correction must be applied on account of the exponent A. These corrections may be found as follows :

Let log. $\rho_{1}=\log .(B T)+\log \cdot \gamma$, then the entire correction

$$
r_{1}=\log \cdot \rho-\log \cdot \rho_{1}=\log \cdot \gamma(\lambda-1)+\log \cdot(B T)(A-1) \ldots(5)
$$

in which the two terms of the last member are the first and second corrections respectively. The following will illustrate a method of tabulating these corrections :

ζ	0.01000	2000	3000	4000	ζ
60°	5	9	14	18	$80^{\circ} 40^{\prime}$
61	5	10	15	20	810
62	5	11	16	22	8130
63	6	12	17	23	8150
64	6	18	19	25	8210
65°	7	14	20	27	$82030{ }^{\prime}$

The argument at the top is either log. $(B T)$ or $\log . \gamma$, according to which correction is sought for. The side arguments are zenith distances, which may be replaced by declinations, de.

The first column is used when taking out the first correction, and the last column, when taking out the second correction. To find the values of the argument for the last column, enter Bessel's table " A " with the value of λ. for any zenith distance of the first column, and against it will be found the corresponding zenith distance for the last column. The units place of the corrections, corresponds to the fiftly place of $\log . \rho$, and when the logarithmic argument is negative, the correction is negative, and vice versa.

In place of the above table of corrections to mean refraction, a graphical table may be constructed, which has some advantages. Let a right-angle triangle $A B C$ be drawn, containing lines parallel to the base, at equal distances apart.

These equal distances may represent seconds, or tenths of a seconcl. The distance $B C$ is made equal to the maximum correction $r m$, or the correction for the maximum zenith distance, and naximum value of loy. ρ, which
occur in the table. Values of r are now computed for the different values of the argument log. ", but for the maximum zenith distance, and the results laid ofl on the line $B C$, from the point B; and against the points thas found the arguments $\log p$ are written. Along the line $A B$ are written the zenith distances. Equal inerements of zeni:h distance are represented ly unequai increments of the line $A B$, in order that the line $A C$, or line of maximum corrections, may be a straight line. Call the co-ordinates of any point of $A C$. l and r, and the distance $A B, d m$. Then

$$
d: d m=r: r m
$$

$$
\text { or } \left.l={ }_{r m}^{d m} r=\frac{d m}{r m} R_{1}\left(, m m-r_{0}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right)
$$

from which the distances of the arguments from the point a may be determined. The line $A D$ represents the edge of a ruler, or a thread, stretched from a needle at the point A. If this line be turned albout A, until it passes through that point $B C$, corresponding to the value of \log a for which the correction is sought, the correction will be the length of the perpendicular to $A B$, me:sured to its intersection with $A D$, at the point corresponding to the given zenith distance.

This method las the advantage that the interpolations are made separately, and will undoubtedly give good results, if the diagram is drawn carefully, and large enough.

[^0]: *See Peter's "Astronomische Tafeln und Formeln."

